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Abstract This paper introduces the development of an

original PVC membrane electrode, based on 4-chloro-1,2-

bis(2-pyridinecarboxamido)benzene (CBPB) as a suitable

carrier for the Ho3+ ion. The electrode presents a Nernstian

slope of 19.7 ± 0.3 mV per decade for the Ho3+ ions across

a broad working concentration range from 1.0 · 10–6 to

1.0 · 10–2 M. The lower detection limit was 8.5 · 10–7 M

in the pH range 2.7–9.8, while the response time was rapid

(<15 s). Therefore, this potentiometric sensor displayed

good selectivity for a number of cations such as alkali,

alkaline earth, transition and heavy metal ions. The prac-

tical applicability of the electrode was demonstrated by its

use as an indicator electrode in the potentiometric titration

of Ho3+ ions with EDTA and in the determination of F- in

mouth wash samples.

Keywords PVC membrane � Holmium(III) ion-selective

electrode � Potentiometry � 4-Chloro-1,2-bis(2-
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1 Introduction

With the increase in rare earth applications in agricultural,

metallurgical and functional material areas, etc., conve-

nient, fast and sensitive analysis methods are urgently re-

quired. One of these rare earths is holmium, whose

compounds are used in ceramics and glasses as well as

phosphor lamps. It is also capable of absorbing fission-bred

neutrons; therefore, it is used in nuclear reactors to control

atomic chain reactions. All holmium compounds should be

regarded as highly toxic, although initial information sug-

gests that the danger is limited. The metal dust presents fire

and explosion hazards.

The low-level determination of rare-earth ions in solu-

tion, for the first time, was carried out by Houk et al. [1] in

1980 by using inductively coupled argon plasma as anion-

source for mass-spectrometeric determination. In 1991, Al-

Merey et al. [2] determined rare-earth elements in phos-

phate rocks using both inductively coupled plasma atomic

emission spectrometry and instrumental neutron activation

analysis. In 1996, determination of dysprosium, holmium

and erbium in high purity rare earth oxides by second order

derivative spectrophotometry [3] and neodymium, erbium

and holmium in rare earth mixtures with 2-phenyltrifluo-

roacetone and octylphenol poly(ethyleneglycol) ether by

third-derivative spectrophotometry [4] were reported.

Wang et al. [5] has also developed spectrochemical

methods and Li et al. [6] have reported an electrochemical

method, adsorption voltammetry, at a carbon paste elec-

trode. These methods are either time consuming, involving

multiple sample manipulations, or are too expensive for

most analytical laboratories.

Potentiometric detection based on ion-selective elec-

trodes (ISEs) offer the advantages of speed and ease of

preparation and procedures, relatively fast response, rea-
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sonable selectivity thorough judicious choice of the mem-

brane active materials, wide linear dynamic range, and low

cost. These characteristics have inevitably led to the

preparation of numerous sensors for several ionic species,

and the list of available electrodes has grown substantially

over the past years.

It is important to have a high selectivity method for

lanthanides because as a group they display similar phys-

ical and chemical properties. Only one paper describes

holmium determination using an ion selective electrode

with a narrow dynamic range (from 1.0 · 10–5 to 1.0 · 10–

2 M) [7].

Several highly selective and sensitive membrane sensors

for alkaline earth and transition metal ions have been re-

ported [8–17]. However, this study describes the develop-

ment of a new ion selective sensor for the Ho(III)

determination and, in particular, the use of 4-chloro-1,2-

bis(2-pyridinecarboxamido)benzene (CBPB) as an iono-

phore for the preparation of a highly Ho(III) ion-selective

electrode (Fig. 1).

2 Experimental

2.1 Reagents

The Merck Chemical and the Aldrich Co. were the sup-

pliers for the nitrate and chloride salts of all cations, the

reagent grades of dibutyl phthalate (DBP), benzyl acetate

(BA), 2-nitrophenyl octyl ether (NPOE), sodium tetraphe-

nyl borate (NaTPB), tetrahydrofuran (THF) and relatively

high molecular weight PVC. All reagents were used

without any modification. As far as the nitrate and chloride

salts of all employed cations were concerned, they were of

the highest available purity and were P2O5-vacuum dried.

During the experiments, triply distilled deionized water

was used. 4-Chloro-1,2-bis(2-pyridinecarboxamido)ben-

zene (CBPB) was synthesized by a literature method [18].

2.2 Electrode preparation

The PVC membrane preparation involved the blending of

the following compounds; 32 mg of powdered PVC, 60 mg

of the NPOE plasticizer, 2.5 mg of the NaTPB additive and

5.5 mg of the CBPB ionophore in 5 ml of fresh THF. The

resulting mixture was transferred into a glass dish (2 cm in

diameter) and the solvent was evaporated slowly until an

oily concentrated mixture was obtained. A Pyrex tube (3–

5 mm i.d.) was dipped into the mixture for about 10 s, so

that a transparent membrane of about 0.3 mm in thickness

was formed. The tube was, then, removed from the mix-

ture, kept at room temperature for about 24 h and filled

with an internal filling solution (1.0 · 10–3 M of HoCl3).

Finally, the electrode was conditioned by soaking in a

1.0 · 10–2 M HoCl3 solution for 36 h [19–28]. As an

internal reference electrode, a silver-silver chloride wire

was used.

2.3 The emf measurements

All electromotive force (emf) measurements were carried

out with the following cell assembly; Ag/AgCl | internal

solution, (1·10–3 M HoCl3) | PVC membrane | test solution

| Hg2Cl2, KCl (saturated). A Corning Ion Analyzer

250 pH//mV meter was used for the potential measure-

ments at 25.0 ± 0.1 �C. The activities were calculated

according to the Debye–Huckel procedure [29].

3 Results and discussion

3.1 Potential responses

The ionophore CBPB was used as a neutral carrier to

prepare the PVC ion-selective membrane electrodes. The

potential sensor responses of various ions are shown in

Fig. 2(a) and (b). For all these ions, except for the Ho(III)

ion, the slope of the corresponding potential pM plots was

much lower than the expected Nernstian slopes of 59, 29.5

and 20 mV decade–1, for the uni, di and trivalent cations,

respectively. This was likely due to the high ionophore

selectivity towards Ho(III) ion over the other metal ions as

well as the rapid exchange kinetics of the resulting Ho(III)–

Ho(III) complex.

3.2 Membrane composition effect on the potential

response

It is well known that the membrane composition and,

especially in some cases, the nature of the additive have a

significant influence on the sensitivity and selectivity for a

certain ionophore [30]. The performance characteristics of
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N
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Fig. 1 Structure of the ionophre 4-chloro-1,2-bis(2-pyridinecarbox-

amido)benzene (CBPB)
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several membranes, having ingredients of different pro-

portions, are listed in Table 1. It is seen that the membrane

number 10 with the PVC:NPOE:CBPB:NaTPB ratio of

32:60:5.5:2.5 exhibits a Nernstian slope over a broad

Ho(III) ion concentration range.

Moreover, it is interesting to note that the presence of

lipophilic and immobilized ionic additives [31] could

influence the membrane resistance and, sometimes, the

selectivity pattern of the ion-selective PVC membrane,

resulting in a good working performance. In line with

Table 1, the PVC membrane sensitivity was low, when an

appropriate additive was absent (nos. 1–6 with slopes of

8.7–15.7 mV decade–1). Nonetheless, the presence of

additives would improve the Ho(III) sensor sensitivity

considerably (no. 10 with a slope of 19.7 mV decade–1).

Furthermore, Table 1 summarizes the results from the

potential sensor response in the absence of the ionophore

(nos. 14–16). The corresponding response was found to be

weak.

3.3 Calibration curve and statistical data

The detection limit, defined as the obtained Ho(III) con-

centration when extrapolating the linear region of the

sensor calibration curve with the optimum concentration

(Fig. 3) to the baseline potential, was 8.5 · 10–7 M. The

optimum electrode response was tested after conditioning

for different time periods in 1.0 · 10–2 M Ho(III) chloride.

The slope deriving from a 24 h conditioning was closer to

the theoretical slope, expected on the basis of the Nernstian

equation. Longer conditioning time showed no further

improvements in response. The optimum conditioning

solution was determined to have a concentration of about

1.0 · 10–2 M. In addition, the standard deviation of eight

replicate measurements was ±0.5 mV. The electrode life-

time, which is a measure of the electrode durability, was

also studied over a period of 12 weeks. The membrane

sensor lifetime was at least 10 weeks. During this period;

the electrode was used for 1 h per day and 5 days per week.

After each usage, it was washed thoroughly. After

10 weeks, only relatively slight changes were observed in

the electrode slope and the detection limit from 19.7 ± 0.3

and 8.5 · 10–7 M to 17.2 ± 0.2 mV decade–1 and

7.0 · 10–5 M of Ho(III) activity, respectively. These re-

sults are shown in Table 2.

3.4 pH effect and response time

In order to study the pH effect on the sensor performance,

the potentials were determined at pH values from 1.5 to

12.0 (concentrated NaOH or HCl was used for pH adjust-

ment) at a specific Ho3+ concentration (1.0 · 10–3 M). The

corresponding results are depicted in Fig. 4. The potential

remained constant from pH 2.7 to 9.8, beyond which some

drift in potential was observed. The observed drift at higher

pH may be attributed to the formation of some Ho3+ hy-

droxyl complexes in the solution. At lower pH, the

potentials increased, indicating that the membrane sensor

responded to protonium ions, as a result of some extent

nitrogen atom protonation of the ionophore.

In analytical applications the dynamic response time is

an essential parameter [32]. In this study the average time

required for the Ho(III) sensor to reach a ±1 mV potential

of the final equilibrium value was measured, after succes-

sive immersions into a series of Ho(III) ion solutions, each

having a 10-fold concentration difference. The potential
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Fig. 2 Potential responses of different ion-selective electrodes based

on CBPB with the membrane no. 10 composition
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versus time plot is shown in Fig. 5, where it is clear that

over the entire concentration range the plasticized mem-

brane electrode reached equilibrium responses in a short

time (<15 s).

3.5 Ho(III) electrode selectivity

For the selectivity coefficient measurements, the matched

potential method was used. According to the MPM [33], a

specified activity (concentration) of primary ions (A) is

added to a reference solution and the potential is measured.

In a separate experiment, interfering ions (B) are succes-

sively added to an identical reference solution, until the

measured potential matches that obtained before the pri-

mary ion addition. The MPM selectivity coefficient is then

given by the resulting primary ion to the interfering ion

activity (concentration) ratio, KMPM = aA/aB. The experi-

mental conditions and the resulting values are listed in

Table 3. For all the tested ions, the selectivity coefficients

were of the order 8.2 · 10–3 or smaller, indicating that they

would not radically disturb the function of the sensor.

Therefore, the electrode may be used for Ho(III) ion

detection in the presence of certain interfering ions.

The characteristics of the sensor were compared with

those of the best holmium electrodes reported in the liter-

ature [7] (Table 4). It can be concluded that this sensor in

terms of selectivity, detection limit, and dynamic concen-

tration range, was superior to all previously described

holmium sensors.

3.6 Analytical application

3.6.1 Titration with EDTA

The Ho(III) membrane electrode was found to work well

under laboratory conditions. It was successfully applied to

the titration of a Ho(III) solution with EDTA. The resulting

titration curve is displayed in Fig. 6, where it can be ob-

served that the Ho(III) amount in solution can be accurately

detected.

Table 1 Optimization of the

membrane ingredients
Electrode No. Composition/wt%, PVC 32% Slope/mV decade–1 Conc. Range/M

CBPB NaTPB NPOE DBP BA

1 2 0 66.0 0 0 8.7 ± 0.3 1.0 · 10–4–5.0 · 10–2

2 3 0 65.0 0 0 11.2 ± 0.4 1.0 · 10–4–1.0 · 10–2

3 4 0 64.0 0 0 15.6 ± 0.6 1.0 · 10–4–1.0 · 10–2

4 5 0 63.0 0 0 14.9 ± 0.4 1.0 · 10–4–1.0 · 10–2

5 6 0 62.0 0 0 14.7 ± 0.3 1.0 · 10–4–1.0 · 10–2

6 5.5 0 62.5 0 0 15.7 ± 0.1 1.0 · 10–5–1.0 · 10–2

7 5.5 1.0 61.5 0 0 18.0 ± 0.7 1.0 · 10–6–1.0 · 10–2

8 5.5 1.5 61.0 0 0 18.2 ± 0.4 1.0 · 10–6–1.0 · 10–2

9 5.5 2.0 60.5 0 0 18.5 ± 0.5 1.0 · 10–6–1.0 · 10–2

10 5.5 2.5 60.0 0 0 19.7 ± 0.3 1.0 · 10–6–1.0 · 10–2

11 5.5 3.0 59.5 0 0 17.4 ± 0.4 1.0 · 10–5–1.0 · 10–2

12 5.5 2.5 0 60 0 16.6 ± 0.5 1.0 · 10–6–1.0 · 10–2

13 5.5 2.5 0 0 60 18.2 ± 0.7 1.0 · 10–6–1.0 · 10–2

14 0 2.5 65.5 0 0 4.3 ± 0.3 1.0 · 10–4–1.0 · 10–3

15 0 2.5 0 65.5 0 3.8 ± 0.5 1.0 · 10–4–1.0 · 10–3

16 0 2.5 0 0 65.5 4.1 ± 0.3 1.0 · 10–4–1.0 · 10–3
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Fig. 3 Calibration curve of holmium electrode based on CBPB with

the membrane no. 10 composition. The results are based on eight

measurments (R2:0.998)
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3.6.2 Fluoride ion determination

This sensor was also successfully applied to the determi-

nation of F– ions in two mouth wash samples. 1.0 g of each

sample was taken and diluted with distilled water in a

100 ml flask and titrated with a Ho3+ solution (1.0 ·
10–3 M). The results, after triplicate measurements, are

summarized in Table 5. The measurement principle for the

determination of fluoride ions was based on the monitoring

of the Ho3+ ion concentration. At the beginning of the

titration, the Ho3+ concentration was zero. With Ho3+

Table 2 The lifetime of the Ho3+ microelectrode sensor

Week Slope/mV decade–1 D.L

First 19.7 ± 0.3 8.5 · 10–7 M

Second 19.7 ± 0.5 8.7 · 10–7 M

Third 19.6 ± 0.4 9.0 · 10–7 M

Fourth 19.5 ± 0.2 9.2 · 10–7 M

Fifth 19.4 ± 0.3 9.5 · 10–7 M

Sixth 19.2 ± 0.2 9.6 · 10–7 M

Seventh 19.1 ± 0.2 9.9 · 10–7 M

Eighth 18.9 ± 0.4 1.0 · 10–6 M

Ninth 18.8 ± 0.3 1.5 · 10–6 M

Tenth 18.6 ± 0.2 3.0 · 10–6 M

Eleventh 18.0 ± 0.4 8.0 · 10–6 M

Twelve 17.2 ± 0.2 7.0 · 10–5 M
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Fig. 4 pH effect of the test solution (1.0 · 10–3 M of Ho3+) on the

potential response of the Ho3+ ion-selective electrode with the

membrane no. 10 composition
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Fig. 5 Dynamic response time of the Ho3+ ion-selective electrode for

step changes in the Ho3+ concentration: (A) 1.0 · 10–6 M, (B)

1.0 · 10–5 M, (C) 1.0 · 10–4 M, (D) 1.0 · 10–3 M, (E) 1.0 ·
10–2 M, (F) 1.0 · 10–1 M

Table 3 Selectivity coefficients of various interfering ions (B)

Interfering ion KMPM
Ho3þ ; B Interfering ion KMPM

Ho3þ ; B

Na+ 5.9 · 10–4 Sm3+ 5.3 · 10–3

K+ 6.7 · 10–4 Nd3+ 5.0 · 10–3

Mg2+ 1.9 · 10–3 Dy3+ 8.2 · 10–3

Ca2+ 3.3 · 10–3 La3+ 8.7 · 10–4

Pb2+ 7.4 · 10–3 Yb3+ 4.2 · 10–3

Ni2+ 8.5 · 10–4 Gd3+ 6.4 · 10–3

Co2+ 7.5 · 10–4 Tb3+ 7.5 · 10–3

Cd2+ 6.4 · 10–4 Ce3+ 1.2 · 10–3

Table 4 Comparison of selectivity coefficients, detection limit, re-

sponse time and linearity range of the developed Ho(III) sensor and

the formerly mentioned Ho(III) ion-selective electrodes

Ref. [7] This work

Linearity range/M 1.0 · 10–5–1.0 · 10–2 1.0 · 10–6–1.0 · 10–2

Detection limit/M 7.0 · 10–6 8.5 · 10–7

Response time/s <15 <15

Selectivity

coefficients

MPM MPM

Na+ 4.0 · 10–2 5.9 · 10–4

K+ 7.0 · 10–3 6.7 · 10–4

Mg2+ 3.0 · 10–2 1.9 · 10–3

Ca2+ 8.5 · 10–3 3.3 · 10–3

Pb2+ 4.5 · 10–2 7.4 · 10–3

Ni2+ – 8.5 · 10–4

Co2+ – 7.5 · 10–4

Cd2+ – 6.4 · 10–4

Sm3+ 3.0 · 10–2 5.3 · 10–3

Nd3+ 8.5 · 10–3 5.0 · 10–3

Dy3+ 7.0 · 10–2 8.2 · 10–3

La3+ 1.0 · 10–2 8.7 · 10–4

Yb3+ – 4.2 · 10–3

Gd3+ 4.0 · 10–2 6.4 · 10–3

Tb3+ – 7.5 · 10–3

Ce3+ – 1.2 · 10–3
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addition to the solution containing F– ions, insoluble HoF3

was formed and the potential during the titration remained

almost constant. This is due to the formation of insoluble

HoF3 and the potential changes caused by the Ksp of HoF3.

After total F– ion conversion to HoF3 by addition of Ho3+

ions, the solution potential changed sharply. The beginning

of the sharp change was the end point of the titration. There

was a satisfactory agreement among the declared fluoride

contents, the values determined by the sensor and the

commercial solid fluoride sensor (ELIT 101).

4 Conclusion

A potentiometric CBPB-PVC-based membrane sensor

functioned as an excellent Ho3+ selective membrane sensor

and could be used for Ho3+ detection in the presence of

considerable concentrations of common interfering ions.

The characteristics making the device suitable for the

determinations of this ion were the applicable pH range,

the lower detection limit and the potentiometric selectivity

coefficients, determined after use of the sensor. The sensor

was successfully applied to the determination of fluoride

ions in mouth wash preparations. It was also used as an

indicator electrode in the potentiometric titration of Ho(III)

ions with EDTA.
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